
Integrating Nominal and
Structural Subtyping

Donna Malayeri

Jonathan Aldrich

Structural vs. nominal
subtyping

Nominal Subtyping

A type T is a subtype of U only if T has been declared as
a subtype of U

The norm in mainstream languages like Java

Structural subtyping

a type T is a subtype of U if T has at least U’s methods

and fields—possibly more, possibly with more refined
types

So, any class with an iterator() method would

automatically be a subtype of Iterable
2

Our language: Unity

A type has:

a nominal component (a brand)

a structural component (its fields and methods)

Subtyping takes both components into account

Allows structural subtyping to co-exist with
external dispatch

Combination is novel

3

Why
structural
subtyping?

4

A motivating example!(Java)

5

class Icon {

 void draw() { … }

 void setBounds(Rect r) { … }

}

class Circle implements Drawable {

 void draw() { … }

 void setBounds(Rect r) { … }

 void setAlpha(int alpha) { … }

}

interface Drawable {

 void draw();

 void setBounds(Rect bounds);

 void setAlpha(int alpha);

}

void centerAndDraw(_____ item) {

 ... !!"#$%&'()"*)#(

 item.setBounds(rect);

 item.draw();

}

Our solution: Unity

Structural subtyping: !Drawable " Bitmap
! ! ! Circle " Bitmap

! ! ! Circle " Drawable

! ! ! Icon " Bitmap
6

type Drawable =

 Object (

 draw() : unit,

 setBounds(bounds:Rect) : unit,

 setAlpha(alpha:int): unit)

 type Bitmap =

 Object (

 draw() : unit,

 setBounds(bounds:Rect) : unit)

brand Circle extends Object (

 method draw() : unit = …,

 method setBounds(r:Rect) = …,

 method setAlpha(alpha:int) = …

)

brand Icon extends Object (

 method draw() : unit = …,

 method setBounds(r:Rect) = …

)

Our solution: Unity

7

type Drawable =

 Object (

 draw() : unit,

 setBounds(bounds:Rect) : unit,

 setAlpha(alpha:int): unit)

 type Bitmap =

 Object (

 draw() : unit,

 setBounds(bounds:Rect) : unit)

brand Circle extends Object (

 method draw() : unit = …,

 method setBounds(r:Rect) = …,

 method setAlpha(alpha:int) = …

)

brand Icon extends Object (

 method draw() : unit = …,

 method setBounds(r:Rect) = …

)

method centerAndDraw(item : Bitmap) =

 ... !!"#$%&'()"*)#(

 item.setBounds(rect);

 item.draw();
8

Example 2: composing interfaces

ScalableDrawable

+ scale(int)

Scalable
+ draw()

Drawable
+ rotate(int)

Rotate

DrawRotate ScaleRotate

ScaleRotateDrawable

class Glyph implements Scalable, Rotate {

 ...

}

void doSomething(ScaleRotate shape) { ... }

doSomething(new Glyph());

Method

call fails!

How to solve this problem?

Problem: nominal subtyping doesn’t compose

types Scalable and Movable do not compose

to ScalableMovable

But types DO compose in structural subtyping!

{scale()} and {move()} compose naturally

to {scale(), move()}

No need to manually define all combinations

of types!

9

Benefits of structural
subtyping

Flexible and compositional

Allows unanticipated reuse

No unnecessary proliferation of declared types

Useful for data persistence and distributed

computing

Examples: O’Caml objects, static “duck typing”

10

Why nominal
subtyping?

11

Expressing intent

12

Nominal subtyping benefits

ClosedShape has the same interface as OpenShape,

but we don’t want them to be interchangeable

13

void Image.mask(ClosedShape shape) { ... }

myimage.mask(freeformCurve); // type error

myimage.mask(circle); !// ok

+ fill(Color);

ClosedShape
+ fill(Color);

OpenShape

FreeformCurve BezierCurveCircle FreeformShape Nominal Subtyping:

Provides better error messages

Facilitates natural and efficient external methods

More on this later

Languages: Java, C#, C++, VB, Modula-3, etc.

14

Additional benefits

Solution: Unity

Combines nominal and structural subtyping

The flexibility and composability of structural

subtyping

Along with the design intent of nominal

subtyping

Types have both a nominal and structural

component

A ! B iff

A !nominal B and A !structural B
15

Example 3 in Unity

16

brand ClosedShape extends Object (...)

brand Circle extends ClosedShape (

 method fill() : unit = ... , ...)

brand FreeformCurve extends OpenShape (

 method fill() : unit = ... , ...)

brand Image extends Object (

 method mask(shape:ClosedShape) = ...

)

myimage.mask(freeformCurve); // type error, +*))+$*%,'*-) !,.$/)0123&)

myimage.mask(circle); // ok

Example 3 in Unity

17

brand ClosedShape extends Object (...)

brand Circle extends ClosedShape (

 method fill() : unit = ... , ...)

brand FreeformCurve extends OpenShape (

 method fill() : unit = ... , ...)

brand Image extends Object (

 method mask(shape:ClosedShape()) = ...

)

myimage.mask(freeformCurve); // type error, +*))+$*%,'*-) !,.$/)0123&)

myimage.mask(circle); // ok

Example 3 in Unity

18

brand ClosedShape extends Object (...)

brand Circle extends ClosedShape (

 method fill() : unit = ... , ...)

brand FreeformCurve extends OpenShape (

 method fill() : unit = ... , ...)

brand Image extends Object (

 method mask(shape:ClosedShape(getArea():int)) = ...

)

myimage.mask(freeformCurve); // type error, +*))+$*%,'*-) !,.$/)0123&)

myimage.mask(circle); // type error, ,4*#.) lacks 5)(6*)3() method

Adding methods to implement
an interface

Want to add new method to Circle to make it

implement EnhancedClosedShape

But, can’t change Circle directly

Solution: structural subtyping & external methods

19

brand Circle extends ClosedShape

 (method fill() : unit = …

 ...

)

type EnhancedClosedShape =

 ClosedShape(getArea():int)

Structural subtyping +
external methods

20

External methods let you add methods to a

brand, outside its definition

Now Circle is structurally a subtype of
EnhancedClosedShape

mask(EnhancedClosedShape s)

 = ...

myimage.mask(circle);

brand Circle extends ClosedShape

 (method fill() : unit = …

 ...

)

type EnhancedClosedShape =

 ClosedShape(getArea():int)
in a separate

compilation

unit

method Circle.getArea()

 = ... typechecks!

External dispatch may cause
ambiguity

21

Non-example, structural dispatch:

type Foo = Object({foo:int})

type Bar = Object({bar:char})

method Foo.m() : unit = …

method Bar.m() : unit = …

Inefficient: would have to check entire structure of type

Ambiguous: what if m’s receiver has type

{foo:int, bar:char}?

Because {foo:int, bar:char} " Foo
 {foo:int, bar:char} " Bar

!

What are we dispatching
on?

Dispatch on nominal types (i.e. brands)

Another reason to combine structural and
nominal subtyping: external dispatch depends
on nominal types!

22

Nominal types

brand Circle extends ClosedShape

 (method fill() : unit = …

 method scale(int) : unit = …

 method draw() : unit = …)

method Circle.getArea()

 = ...

External methods in Unity

Conceptually part of an existing brand/class

Performs dispatch on objects of that brand’s

type

Dispatch: method is selected based on the run-

time type of the object

Doesn’t have to be in the same compilation

unit as the brand

23

Conceptually part of an existing brand/class

Performs dispatch on objects of that brand’s

type

Dispatch: method is selected based on the run-

time type of the object

Doesn’t have to be in the same compilation

unit as the brand

24

External methods in Unity

Unity benefits

Makes it easier to maintain software, both in
terms of interfaces and code

Structural subtyping eases the task of
expressing an interface

An interface is just a type and does not need to
be declared in advance

Nominal subtyping captures intent

External dispatch eases the task of
conforming to an interface

25

Examples

26

Eclipse JDT: example 1

All of these classes have method IBinding resolveBinding()

But there’s no HasBinding interface with a resolveBinding()

method

Structural subtyping would solve this problem—just declare

the interface after-the-fact
27

ImportDeclaration

MemberRef

MethodRef

Name

AnnotationTypeDeclaration

AnonymousClassDeclaration

EnumDeclaration

Type

… plus 8 more

Eclipse JDT: example 2

All of these classes have method SimpleName getName()

But there’s no HasName interface with a getName() method

28

! AbstractTypeDeclaration

! AnnotationTypeMemberDeclaration

! EnumConstantDeclaration

! FieldAccess

! MemberRef

! MemberValuePair

! MethodDeclaration

! MethodInvocation

! … plus 8 more

class MyLabelProvider extends LabelProvider

{

 String getText(Object element) {

! String label;

! if (element instanceof AbstractTypeDeclaration)

! ! label = ((AbstractTypeDeclaration) element).

 getName().toString();

! else if (element instanceof EnumConstantDeclaration)

! ! label = ((EnumConstantDeclaration) element).

 getName().toString();

! else if (element instanceof FieldAccess)

! ! label = ((FieldAccess) element).

 getName().toString();

! else if (element instanceof MemberRef)

! ! label = ((MemberRef) element).

 getName().toString();

! ...

!

! return label;

 }

}

Displaying elements in a tree view:
Java

29

if (element instanceof AbstractTypeDeclaration)

! ! label = ((AbstractTypeDeclaration) element).

 getName().toString();

Displaying elements in a tree view:
Unity

brand MyLabelProvider extends LabelProvider (

! method getText(element : Object(getName() : SimpleName)) : String =

! element.getName().toString()

}

30

Empirical evidence

Empirical study of 15 Java applications

showed that 12%-28% of methods share a

name but not a common supertype

Range from 164 to 24,500 methods in

application

Example: 5 iterator decorators in Apache

Collections have methods getIterator and
setIterator

31

Summary of results

32

Total methods %common methods

Tomcat

Ant

JHotDraw

Smack

Struts

Apache Forrest

Cayenne

Log4j

OpenFire

Apache Collections

Derby

Lucene

jEdit

Apache HttpClient

Areca

14678 28.4%

9178 28.1%

5149 23.2%

3921 22.5%

3783 20.4%

164 17.1%

9243 16.7%

1950 16.0%

8135 16.0%

3762 15.5%

24521 14.6%

2472 13.4%

5845 12.0%

1818 11.9%

3565 11.9%

Integrating Nominal and Structural Subtyping 275

Σ ! τ1 ≤ τ2

Σ ! τ ≤ τ

Σ ! τ1 ≤ τ2 Σ ! τ2 ≤ τ3

Σ ! τ1 ≤ τ3

Σ ! β1 # β2 Σ ! M1 ≤ M2
Σ ! β1(M1) type Σ ! β2(M2) type

Σ ! β1(M1) ≤ β2(M2)

Σ ! σ1 ≤ τ1 Σ ! τ2 ≤ σ2

Σ ! τ1 → τ2 ≤ σ1 → σ2

Σ ! τ ≤ σ1 Σ ! τ ≤ σ2

Σ ! τ ≤ σ1 ∧ σ2 Σ ! τ1 ∧ τ2 ≤ τ1

Σ ! τ1 ∧ τ2 ≤ τ2

{!i : τi
i∈1..n} is a permutation of {!j : τj

j∈1..n}
Σ ! {!i : τi

i∈1..n} ≤{ !j : τj
j∈1..n}

n > m
Σ ! {!i : τi

i∈1..n} ≤ {!j : τj
j∈1..m}

Σ ! τi ≤ σi (i∈1..n)

Σ ! {!i : τi} i∈1..n ≤ {!i : σi} i∈1..n

Σ ! β1 # β2

Σ ! β1(M1) ∧ β2(M2) ≤ β1(M1 ∧ M2)

Σ ! β1 # β2 Σ ! M2 ≤ M1 Σ ! σ1 ≤ σ2

Σ ! β1(M1) ⇒ σ1 ≤ β2(M2) ⇒ σ2

Σ ! {m : τ} ≤{ n : σ}
Σ ! m : τ ≤ n : σ

Fig. 8. Unity subtyping judgement

was defined to have. There is an additional check that the methods are valid overrides
(override is defined in Fig. 11). The rest of the rules for the type formation judgement
are straightforward; the full judgement appears in Appendix A.

Our language includes a limited form of intersection types, à la Davies and Pfenning;
the rules for intersection types are borrowed from their work [9].

There is also a subtyping rule for a list of (method : type) pairs; it simply applies
the record subtyping rule. The remaining subtyping rules are the standard reflexivity,
transitivity, and function subtyping rules.

Typing rules. Full typing rules for typechecking programs and expressions appear in
Figs. 9 and 10, respectively. Auxiliary judgements are defined in Fig. 11. The interest-
ing rules are TP-BRAND, TP-EXT-METHOD, TP-NEW-OBJ and TP-INVOKE; the others are
standard.

The rule TP-BRAND (Fig. 9) ensures that a brand declaration is well-formed. The
newly defined brand must contain at least the labels and fields of the supertype (possibly
with refined types); this is checked via the condition τ ≤ fieldTypeΣ(β′). Note that if
a field type is a record, then subtypes must list all the labels of the parent. Aside from
simplifying the calculus, this sidesteps issues of variable shadowing while allowing
subtypes to refine the type of a particular label. The rule also checks that the methods
given are valid overrides of the methods of the super-brand, and, in the case of concrete
classes, that all methods are concrete.

Type soundness proof

Proved the usual progress and preservation

theorems

Type safety implies that no method-not-found

or method-ambiguous errors will occur during

evalution

33

Selected Related Work

Similar approaches after our initial proposal:

Scala [Odersky ’07], Whiteoak [Gil and Maman ’08]
not formalized

External methods: MultiJava [Clifton et al ’00]

Only structural typing, not subtyping: Modula-3

34

Summary

Unity combines structural and nominal

subtyping

Allows structural subtyping to co-exist with

external dispatch

Each adds flexibility to the language

Combination is novel

Evidence that existing programs could benefit

35

