
Is Structural Subtyping Useful?
An Empirical Study

Donna Malayeri and Jonathan Aldrich

Carnegie Mellon University, Pittsburgh, PA 15213, USA,
{donna, aldrich}@cs.cmu.edu

Abstract. Structural subtyping is popular in research languages, but all main-
stream object-oriented languages use nominal subtyping. Since languages with
structural subtyping are not in widespread use, the empirical questions of whether
and how structural subtyping is useful have thus far remained unanswered. This
study aims to provide answers to these questions. We identified several criteria
that are indicators that nominally typed programs could benefit from structural
subtyping, and performed automated and manual analyses of open-source Java
programs based on these criteria. Our results suggest that these programs could
indeed be improved with the addition of structural subtyping. We hope this study
will provide guidance for language designers who are considering use of this
subtyping discipline.

1 Introduction

Structural subtyping is popular in the research community and is used in languages such
as O’Caml [15], PolyToil [6], Moby [11], Strongtalk [5], and a number of type systems
and calculi (e.g., [7, 1]). In the research community, many believe that structural subtyp-
ing is beneficial and is superior to nominal subtyping. But, structural subtyping is not
used in any mainstream object-oriented programming language—perhaps due to lack
of evidence of its utility. Accordingly, we ask: what empirical evidence could show that
structural subtyping can be beneficial?

Let us consider the characteristics that a nominally-typed program might exhibit
that would indicate that it could benefit from structural subtyping. First, the program
might systematically make use of a subset of methods of a type, with no nominal type
corresponding to this method set. A particular such implicit type might be used repeat-
edly throughout the program. Structural subtyping would allow these types to be easily
expressed, without requiring that the type hierarchy of the program change.

Second, there might be methods in two different classes that share the same name
and perform the same operation, but that are not contained in a common nominal su-
pertype. This could happen due to oversight, or perhaps the need did not yet exist to
call that method in a generic manner for both classes. Alternatively, perhaps such a
need did exist, but programmers resorted to code duplication rather than refactoring the
type hierarchy. With structural subtyping, the two classes would automatically share a
common supertype.

Or, programs might use the Java reflection method Class.getMethod to call a
method with a particular signature in a generic manner. Structural subtyping provides

1



exactly this capability, with no need for reflection. Finally, what might a class do if it can
only support a subset of its declared interface, but no such super-interface can be defined
(due to library use)? One implementation strategy is to have some of its methods always
throw an UnsupportedOperationException. In contrast, with structural subtyping,
the intended structural super-interface could simply be used.

With these characteristics in mind, we examined up to 29 open-source Java pro-
grams, using both manual and automated analyses (in the case of manual analyses, a
subset of the subject programs were considered). Each aimed to answer one question:
are nominally-typed programs using implicit structural types? We found that indeed
they were; representing these types explicitly could therefore be advantageous.

In our empirical evaluation, we sought to answer the following questions:
1. Does the body of a method use only a subset of the methods of its parameters? If so,

structural types could ease the task of making the method more general. (Sect. 3)
2. If structural types are inferred for method parameters, do there exist types that are

used repeatedly, suggesting that they represent a meaningful abstraction? (Sect. 3.3)
3. How many methods always throw “unsupported operation” exceptions? In such

cases, classes support a structural supertype of the class type. (Sect. 4)
4. Do there exist common methods—methods with the same name and signature, but

that are not contained in a common supertype of the enclosing classes? (Sect 5.1)
5. How many common methods represent an accidental name clash? (Sect 5.2)
6. Can structural subtyping reduce code duplication? (Sect. 5.3)
7. Is there synergy between structural subtyping and other proposed language fea-

tures, such as multimethods? (Sect. 6)
8. Do programs use reflection where structural types would be preferable? (Sect. 7)

Thus, we considered a variety of facets of existing programs. While none of these
aspects is conclusive on its own, taken together, the answers to the above questions
provide evidence that even programs written with a nominal subtyping discipline could
benefit from structural subtyping. This study provides initial answers to the above ques-
tions; further study is needed to fully examine all aspects of some questions, particularly
questions 6 and 7. Additionally, this study considers only the potential benefits of struc-
tural subtyping, while there are situations where nominal types are more appropriate
[23, 17].

To our knowledge, this is the first systematic corpus analysis to determine the ben-
efits of structural subtyping. This paper makes the following contributions: (1) iden-
tification of a number of characteristics in a program that suggest the use of implicit
structural types; and (2) results from automated and manual analyses that measure the
identified characteristics.

2 Corpus and Methodology

For this study, we analyzed the source code of up to 29 open-source Java applications
(details, including version numbers, are provided in [18]). The full set of subject pro-
grams were used for the automated analyses; due to practical considerations, for manual
analysis we chose a subset thereof (ranging from 2 to 8 in size). The applications were
chosen from the following sources: popular applications on SourceForge, Apache Foun-
dation applications, and the DaCapo benchmark suite. The full set of programs range

2



from 12 kLOC to 161 kLOC, and for both kinds of analysis we selected programs based
on size, type (library vs. standalone program) and domain (selecting for variety). For
some of the manual analyses, we favored applications with which we were familiar, as
this aided analysis. All of the manual analyses, including the subjective analyses, were
performed by the first author. The methodology for each analysis is described in the
corresponding section; further details are available in the companion technical report
[18].

For space considerations, in this paper we have omitted data from the 10 smallest
applications that were not already the subject of a manual analysis (in order that the
manual analysis subject programs be a subset of the included automated analysis pro-
grams). (There is one exception: Azureus was used in one manual analysis (Sect. 5.3),
but was too large for our whole-program automated analyses.) We refer the reader to
the companion technical report for full results [18].

3 Inferring Structural Types for Method Parameters

It is considered good programming practice to make parameters as general as the
program allows. Bloch, for example, recommends favoring interfaces over classes in
general—particularly so in the case of parameter types [3]. An analogous situation
arises in the generic programming community, where it is recommended that generic
algorithms and types place as few requirements as possible on their type parameters
(e.g., what methods they should support) [22].

Bloch acknowledges that sometimes an appropriate interface does not exist (e.g.,
class java.util.Random does not implement any non-marker interfaces). In such a
case the programmer is forced to use classes for parameter types—even though it is
possible that multiple implementations of the same functionality could exist [3]. This is
a situation where structural subtyping could be beneficial, as it allows programmers to
create supertypes after-the-fact.

As it is impossible to retroactively implement interfaces in Java, we hypothesized
that method parameter types are often overly specific, and sought to determine both
(1) the degree and (2) the character of over-specificity. To answer question (1), we per-
formed an automated whole-program analysis to infer structural types for method pa-
rameters. Methodology and quantitative results are described in Sect. 3.1. To properly
interpret this data, however, we must consider question (2). Accordingly, we manually
examined the inferred structural types from the previous analysis and considered the
qualitative question of whether changing a method to have the most general structural
type could potentially improve the method’s interface (Sect. 3.2). Across all applica-
tions, we also counted occurrences of inferred structural types that were supertypes of
classes and interfaces of the Java Collections Library. Of these, in Sect. 3.3 we present
those structural types that a client might plausibly wish to implement while not simul-
taneously implementing a more specific nominal type (e.g., Collection, Map, etc.).

3.1 Quantitative Results

Our analysis infers structural types for method parameters, based on the methods that
were actually called on the parameters. (For example, a method may take a List as an

3



argument, but may only use the add and iterator methods.) The analysis, a simple
inter-procedural dataflow analysis, re-computes structural types for each parameter of a
method until a fixpoint is reached. Details of the algorithm are described in the compan-
ion technical report [18]. Structural types were not inferred in the following cases: calls
to library methods, assignments to fields and local variables, uses of primitive types,
uses of types such as String and Object, and cases where the inferred structural type
would have a non-public member.

The analysis is conservative; in the case where a parameter is not used (or only
methods of class Object are used), no structural type is inferred for it. (A parameter
may be unused because (a) it is expected that overriding methods will use the parameter,
or (b) because the method may make use of the parameter when the program evolves,
or (c) because it is no longer needed, due to changes in the program.) In the case of
method overriding, the analysis ensures that the same structural types are inferred for
corresponding parameters in the method family.

Our results suggest that a refactoring that infers structural types is of limited util-
ity unless structural types are used in libraries. On average, only 15% of parameters
could have a structural type inferred. The remaining parameters fell into the following
three categories: an average of 14% were either a primitive type or were unused; an
average of 25% were uses of Object, String or StringBuffer; an average of 49%
were parameters on which a library method was transitively called, or were stored to
fields/local variables, or which called non-public instance methods. Thus, our results do
not paint a complete picture, though the fact that several of the subjects were libraries
does increase confidence in our findings. In our future work, we plan to analyze some
of the libraries used by the subject applications, in order to increase the percentage of
inferrable parameters.

Analysis results for 19 programs are displayed in Table 1. For example, in Ant,
16.5% of parameters could have a structural type inferred. Of these, 98.6% of the pa-
rameters were declared with an overly specific nominal type (i.e., the nominal type
contained more methods than were actually needed). For only 2.4% of the inferred pa-
rameters did a corresponding nominal type exist that would make the parameter type as
general as possible (i.e., a nominal type that contained only those methods transitively
called on the object). There were an average of 2.0 methods in the inferred structural
types, while there were 33.3 methods in the corresponding nominal types. Finally, there
was a median of 1 structural type inferred for each nominal type in the program, and a
maximum of 27 structural types.

Several conclusions can be drawn from the data. First, most parameter types for
which a structural type can be inferred (15% on average) are overly specific (94% on
average). Moreover, for most inferred parameters (91% on average), no nominal type
existed in the program that was as general as possible.

Second, inferred structural types do not have many methods (3.5 on average), while
the corresponding nominal types have quite a few methods (37.8 on average). This
shows that there is quite a large degree of over specificity—more than a full order of
magnitude—in addition to the large percentage of overly specific parameters. This is
likely due to the overhead of naming and defining nominal types, as well as the lack
of retroactive interface implementation. We also found that when nominal types were
as general as possible, they had very few members—one or two on average. This is in

4



Table 1. Results of running structural type inference. Percent inferrable is the percentage of pa-
rameters that could have a structural type inferred for them (i.e., where neither library methods
were transitively called, nor was the parameter unused, etc.), percent overly specific is the per-
centage of the inferrable parameters that have an overly specific nominal type, percent structural
needed is the percentage of the inferrable parameters for which a most general nominal type does
not exist, average methods per structural type is the average number of methods in the inferred
structural types, average methods per nominal type is the average number of methods in nominal
types that appear as parameter types (including inherited methods), and median/maximum struc-
tural types per nominal are the median and maximum, respectively, of the number of inferred
structural types corresponding to each nominal type.

LOC % inferrable % overly % structural Avg methods/ Avg methods/ Struct types/nominal
specific needed structural type nominal type median max

Ant 62k 16.5% 98.6% 97.6% 2.0 33.3 1 27
Apache collect. 26k 10.9% 90.1% 83.6% 1.9 9.9 1 11
Areca 35k 15.0% 99.1% 97.0% 2.6 35.1 1 35
Cayenne 95k 21.1% 96.8% 93.0% 2.4 27.6 2 27
Columba 70k 12.0% 99.6% 98.7% 2.0 55.3 1 19
Crystal 12k 15.9% 97.7% 92.5% 3.5 13.7 1 19
hsqldb 62k 7.8% 99.4% 99.4% 1.9 50.8 2 34
jEdit 71k 6.7% 95.1% 95.1% 2.2 105.2 1 20
JFreeChart 93k 17.2% 97.4% 94.4% 3.2 53.4 1 35
JHotDraw 52k 17.5% 100.0% 99.6% 2.7 55.2 2 19
JRuby 86k 24.6% 97.4% 96.7% 4.4 66.1 1 85
LimeWire 97k 16.7% 98.4% 94.8% 2.1 35.2 1 21
Log4j 13k 17.1% 96.7% 95.0% 1.9 54.9 1 6
Lucene 24k 9.2% 80.5% 77.4% 1.6 9.9 1.5 8
OpenFire 90k 20.6% 99.3% 99.2% 2.5 34.3 1 45
PLT collections 19k 10.3% 49.7% 51.0% 1.6 15.2 1 25
Smack 40k 13.7% 100.0% 90.8% 4.6 25.2 1 13
Tomcat 126k 13.4% 96.7% 96.3% 4.5 34.4 2 32
Xalan 161k 12.4% 95.5% 95.1% 3.1 55.7 1 16

Average 15.0% 93.5% 91.3% 3.5 37.8 1.2 23.4

accordance with previous work which found that interfaces are generally smaller than
classes [25].

Next, for a given nominal type, there were not many corresponding structural types
(2.5 on average, a median of 1.2). The data followed a power law distribution, with an
average maximum of 24; that is, small values were heavily represented, but there were
also a few large values. The low median suggests that the overhead of naming structural
types is not necessarily high; it is plausible that programmers would be able to name
and use structural types for around half of the nominal parameter types.

Finally, if we were to define new interfaces everywhere possible, the average in-
crease in the number of interfaces is 313%, the median is 287%, and the maximum
is 1000%. This illustrates the infeasibility of defining new nominal types for the in-
ferred structural types. Note that we considered only those interfaces for which the
implements clause of a class could be modified (i.e., those classes in the program’s
source); in general, the situation is even worse, as programmers may wish to define
new supertypes for types contained in libraries.

5



3.2 Qualitative Results

Though our results show that many parameters are overly specific, we do not necessar-
ily recommend that every parameter be made as general as possible. This is because a
method might be currently only using a particular set of methods, but later code mod-
ifications may make it necessary to use a larger set; a more general type could hinder
program evolution. On the other hand, more general types make methods more reusable,
which aids program evolution. For this reason, a refactoring to structural types (or even
structural type inference) cannot be a fully automated process—programmers must con-
sider each type carefully, keeping in view the kinds of program modifications that are
likely to occur. Additionally, for some structural types, there may ever be only one
corresponding nominal type, in which case using a structural type is of limited utility.

Accordingly, we considered the empirical question of whether changing a given
method to have the most general structural types for its parameters would make the
method more general in a way that could improve the program. To determine this, we
inspected each method and asked two questions. First, does the inferred parameter type
S generalize the abstract operation performed by the method, as determined by the
method name? Second, does it seem likely that there would be multiple subtypes of S?

We studied two applications: Apache Collections (a collections library) and Crystal
(a static analysis framework). Of methods for which a structural type was inferred on
one or more parameters, we found that 58% and 66%, respectively, would be general-
ized in a potentially useful manner if the inferred types were used.

For example, in Apache Collections, in the class OnePredicate (a predicate class
that returns true only if one of its enclosing predicates returns true), the factory method
getInstance(Collection) had the structural type {iterator(); size();} in-
ferred for its parameter. This would make the method applicable to any collection that
supported only iteration and retrieving the collection size, even if it didn’t support col-
lection addition and removal methods. There were 25 other methods in the library that
used this structural type. Another example is the method ListUtils.intersection
which takes two List objects. However, the first List need only have a contains
method, and the second List need only have an iterator method (for this latter pa-
rameter, the interface Iterable could be used). There were also 8 methods that took an
Iterator as a parameter, but never called the remove method. With a structural type
for the method, the type would clearly specify that a read-only iterator can be passed as
an argument.

In Crystal, two methods took a Map parameter that used only the get and put meth-
ods. Converting the method to use this structural type would make it applicable to a
map that did not support iteration (such a type exists in Apache Collections, for ex-
ample). Also, there were 11 methods that use only the methods getModifiers() and
getName() on an IBinding object (an interface in the Eclipse JDT). Replacing the
nominal type with a structural type would allow the program to substitute a different
“bindings” class that supported only those two methods.

Of course, for some of these structural types, there may not be a large number of
classes that implement its methods but not all of the methods of a more specific nominal
type, e.g., Collection. However, we believe that all of the aforementioned types rep-
resent meaningful abstractions. Furthermore, since it is conceivable that a programmer

6



may define a class implementing that abstraction, using these more general types would
increase the applications’ reusability.

Translation to Whiteoak Using the inference algorithm, we also developed an auto-
mated translation of programs from Java to Whiteoak [14], a research language that
extends Java with support for structural subtyping. We performed this translation on
two programs: Apache Collections and Lucene, validating the results of the analysis
and demonstrating its practical use.

3.3 Uses of Java Collections Library

We examined the inferred structural types that were generalizations of types in the Java
Collections Library. Over all applications, there were 67 distinct types in total, though
not all appeared to express an important abstraction. We made a conservative subjective
finding that at least 10 of these types were potentially useful; these are displayed in
Table 2, along with a description of possible implementations. The relatively high num-
ber of occurrences of each of these structural types further suggests their utility, even
though the types contain few methods. It further shows that programs routinely make
use of types that the library designers either did not anticipate or chose not to support.

Table 2. Uses of Java Collections classes across 19 programs, as inferred using the parameter
structural type inference. (Erasures are used in lieu of generic types.)

Methods in type Uses Description

get(Object); containsKey(Object); 168 Read-only non-iterable map; for instance, a
read-only hashtable

iterator(); isEmpty(); size(); 114 Read-only iterable collection that knows its
size; for instance, a read-only list

add(Object); addAll(Collection); 101 Write-only collection; for instance, a log
put(Object, Object); 55 Write-only map
hasNext(); next(); 28 Read-only iterator
contains(Object); 21 Read-only collection that does not support iter-

ation; for instance, a read-only hashset
get(Object); put(Object, Object); 15 Non-iterable map; for instance, a hashtable
contains(Object); iterator(); size(); 11 Read-only iterable collection that knows its

size and can be polled for the existence of an
element; for instance, an iterable hashset

add(Object); contains(Object); iterator(); size(); 10 Same as above, but that also supports adding
elements

iterator(); size(); toArray(Object[]); 8 Read-only collection that can be converted to
an array; for instance, a read-only array

In summary, the data shows that programs make repeated use of many implicit
structural types. A language that would allow defining these types explicitly could be
beneficial, as it can help programmers make their methods more generally applicable.

3.4 Related work

Forster [12] and Steimann [24] have described experience using the Infer Type refac-
toring, which generates new interfaces for inferred types and replaces uses of overly

7



Table 3. A selection of the structural interfaces “implemented” by classes in the subject programs
once methods unconditionally throwing an UnsupportedOperationException are removed.
(Actual method sets are omitted to conserve space.)

Number of classes

Read-only Iterator 50
Read-only Collection 19
Read-only Map 9
Read-only Map.Entry 6
Read-only ListIterator 6
Collection supporting everything but removal 5
Map supporting everything but removal 4
Collection supporting only read and removal methods 1
Collection supporting iteration, addition, and size only 1
ListIterator supporting read, add, and remove (but not set()) 1
ListIterator supporting only read and set() operation 1
Map supporting read, put, and size only 1
Map supporting read and put, but not size or removal 1
Map supporting everything but entrySet(), values() and containsValue() 1

specific types with these interfaces. This analysis is more general than ours, because it
considers all type references, not just parameter types. However, the refactoring is lim-
ited by the fact that classes in libraries cannot retroactively implement new interfaces.
Steimann found that when applying this refactoring, the number of total interfaces al-
most quadrupled—an increase of 369%.1

4 Throwing “Unsupported Operation” Exceptions

In the Java Collections Library, there are a number of “optional” methods whose doc-
umentation permits them to always throw an exception. This decision was due to the
practical consideration of avoiding an “explosion” of interfaces; the library designers
mentioned that at least 25 new interfaces would be otherwise required [19].

To determine if such super-interfaces would be useful in practice, we to-
talled the methods in the subject programs that unconditionally throw an
UnsupportedOperationException. The program that had the most such methods
was Apache Collections: there were 148 methods that unconditionally throw the excep-
tion (out of 3669 total methods, corresponding to 4%). Next, we considered those meth-
ods that were overriding a method in the Java Collections Library. To encode these op-
tional methods directly would require 18 additional interfaces. There are only 27 inter-
faces defined in the library, so this represents a 67% increase. Note that this is a conser-
vative estimate, as we did not consider interactions between classes (e.g., an Iterable
returning a read-only Iterator). A selection of these structural super-interfaces are
summarized in Table 3. For instance, there were 50 iterator classes that did not support
the remove() operation, and 19 subclasses of Collection that supported a read-only
interface.

1 This differs slightly from our average of 313%, though this difference is likely due to the fact
that Steimann considered only two applications.

8



Note that, with the exception of the read-only iterator, the sets of interfaces in Ta-
bles 3 and 2 are distinct from one another (though some are subtypes). This is likely
due to the fact that different applications use different subsets of the methods of a class.

Structural subtyping could be helpful for statically ensuring that “unsupported oper-
ation” exceptions cannot occur, as it would allow programmers to express these super-
interfaces directly.

5 Common Methods

In our experience, there are situations where two types share an implicit common su-
pertype, but this relationship is not encoded in the type hierarchy. For example, suppose
two classes both have a getName method with the same signature, but there does not
exist a supertype of both classes containing this method. We call getName, and meth-
ods like it, common methods. Common methods can occur when programmers do not
anticipate the utility of a shared supertype or when two methods have the same name,
but perform different operations; e.g., Cowboy.draw() and Circle.draw() [16].

Accordingly, this section aims to answer three questions: (1) how often do common
methods occur, (2) how many common methods represent an accidental name clash,
and (3) do common methods result in code clones.

5.1 Frequency

We performed a simple whole-program analysis to count the number of common meth-
ods in each application. Only public instance methods were considered (resulting in
slightly different data than that previously presented [17]). Results are in Table 4. Over-
all, common methods comprise an average of 19% of all public instance methods. That
is, for 19% of methods, there existed another method with the same name and signature
and the method was not contained in a common supertype of the enclosing types.

We also computed the number of types that share at least two common methods
with another type; there were an average of 9% of such types. These are the cases in
which a structural supertype is most likely to be useful. This high percentage indicates
that there are a number of implicit structural types in most applications.

For example, in Apache Collections, UnmodifiableSortedMap and OrderedMap
share the methods firstKey() and lastKey(). And, AbstractLinkedList
and SequencedHashMap share the methods getFirst() and getLast(). Finally,
BoundedMap and BoundedCollection have the common methods isFull() and
maxSize().

In Lucene, a document indexing and search library, RAMOutputStream and
RAMInputStream both support the seek(), close(), and getFilePointer() meth-
ods, which might be useful to move to a supertype. Also, the classes PhraseQuery
and MultiPhraseQuery both support the methods add(Term), getPositions(),
getSlop(), and setSlop(int).

5.2 Accidental Name Clashes

Of course, to interpret this data, we must consider cases where the common methods
have the same meaning, and where callers are likely to call the methods with the same

9



Table 4. Common methods for each application. Number of types indicates the total number of
types in the application, types with greater than one common method is the number of types that
share more than one common method, percentage is the percentage of this compared to the total
number of types, percent common methods is the percentage of public instance methods that is a
common method, and average number of classes per common signature is the average number of
classes for each common method signature.

LOC Number of Types with >1 Percentage % common Avg # classes/
types common method methods common signature

Ant 62k 945 65 6.9% 31.3% 3.7
Apache Collections 26k 550 19 3.5% 7.3% 2.7
Areca 35k 362 30 8.3% 15.4% 2.7
Cayenne 95k 1415 104 7.3% 18.1% 2.8
Columba 70k 1232 48 3.9% 17.3% 3.1
Crystal 12k 211 4 1.9% 5.1% 2.9
hsqldb 62k 355 31 8.7% 19.5% 2.6
jEdit 71k 880 40 4.5% 11.7% 2.5
JFreeChart 93k 789 301 38.1% 39.5% 3.9
JHotDraw 52k 616 59 9.6% 19.0% 2.8
JRuby 86k 997 83 8.3% 15.6% 3.1
LimeWire 97k 1689 88 5.2% 17.7% 3.1
log4j 13k 201 4 2.0% 13.6% 2.4
Lucene 24k 398 21 5.3% 13.4% 2.6
OpenFire 90k 1039 110 10.6% 19.0% 3
plt collections 19k 812 60 7.4% 7.5% 2.8
Smack 40k 847 115 13.6% 23.5% 3.3
Tomcat 126k 1727 234 13.5% 32.6% 3.6
xalan 161k 1223 94 7.7% 16.1% 2.9

Average 9.3% 19.0% 2.9

purpose in mind. If two methods have the same meaning, it might be useful to define a
structural type consisting of that method. Two methods are defined as “having the same
meaning” if they perform the same abstract operation, taking into account (a) the se-
mantics of the method, and (b) the semantics of the enclosing types. This determination
was made by examining the source code, using javadoc where available.

We studied two applications: Apache Collections and Lucene. In Collections, under
condition (a), there were no methods that had the same signature but performed dif-
ferent abstract operations. However, there were 2 cases (1% of all common methods)
where the methods had the same meaning, but the enclosing classes did not appear to be
semantic subtypes of some common supertype containing that method; i.e., condition
(b) was not satisfied. For example, the classes ChainedClosure and SwitchClosure
both had a getClosures() method, but ChainedClosure calls each of these closures
in turn, while SwitchClosure calls that closure whose predicate returns true.

In Lucene, there were 42 instances of methods that had the same signature, but
did not have the same meaning (19% of all common methods). In 32 of these cases,
the methods were actually performing a different abstract operation. For example,
HitIterator.length() returned the number of hits for a particular query, while
Payload.length() returned the length of the payload data. An additional 10 cases
did not satisfy condition (b) above. For example, in a high-level class IndexModifier,
there were several cases where a method m performed some operation, then called

10



// repeated exactly in 19 classes
if (property == EXPRESSION PROPERTY) {
if (get) {
return getExpression();

} else {
setExpression((Expression) child);

return null;
}

}

private InlineMethodRefactoring(ICompilationUnit unit,
MethodInvocation node, int offset, int length)

{
this(unit, (ASTNode)node, offset, length);
fTargetProvider= TargetProvider.create(unit, node);

fInitialMode= fCurrentMode= Mode.INLINE SINGLE;

fDeleteSource= false;
}

private InlineMethodRefactoring(ICompilationUnit unit,
SuperMethodInvocation node, int offset, int length)

{
... // same method body as above

}
(a) (b)

Fig. 1. Examples of code duplication in the Eclipse JDT. Structural subtyping could eliminate this
duplication.

IndexWriter.m, the latter performing a lower-level operation. So, the semantics of
the methods were similar, but the semantics of each class was different.

Overall, the data is very promising, as it indicates that most common methods have
the same meaning and would benefit from being contained in a structural supertype—
90% on average, across both applications. Structural subtyping would allow these meth-
ods to be called in a generic manner, without the need to create additional interfaces.

5.3 Code Clones

We hypothesized that common methods can lead to code clones, as there is a common
structure that is not expressed in the type system. To determine this, we examined two
applications: Eclipse JDT and Azureus.

In the Eclipse Java Development Tools (JDT), many AST classes have meth-
ods getExpression and setExpression, but these methods are not contained
in a supertype. As a result, there is repeated code in each of these classes, e.g.,
related to reading and storing these attributes in a generic internal AST map.
The code for this is shown in Fig. 1a. This could be re-written using struc-
tural subtyping by writing a helper method taking a parameter of structural type
{ getExpression; setExpression; }. The repeated code would then be replaced
with something similar to getSetExpr(this, get, child). A similar situation oc-
curs with the methods typeArguments() and getBody().

Similarly, the classes FieldAccess and SuperFieldAccess have
no superclass other than Expression. The same problem occurs with
MethodInvocation and SuperMethodInvocation, and ConstructorInvocation
and SuperConstructorInvocation. We found 44 code clones involving these types
(though some were only a few lines long). An example of a code clone involving
MethodInvocation and SuperMethodInvocation appears in Fig. 1b.

In the Eclipse SWT (Simple Windowing Toolkit), there are 13 classes (such as
Button, Label, and Link) with the methods getText and setText that get and set
the main text for the control. But, there is no common IText interface. Azureus, a
BitTorrent client, is an application that requires the ability to call these methods in a

11



if (widget instanceof Label)
((Label) widget).setText(message);

else if (widget instanceof CLabel)
((CLabel) widget).setText(message);

else if (widget instanceof Group)
((Group) widget).setText(message);

... // 5 more items

if (widget instanceof CoolBar) {
CoolItem[] items = ((CoolBar)widget).getItems();

for(int i = 0; i < items.length; i++) {
Control control = items[i].getControl();

updateLanguageForControl(control);

}
} else if (widget instanceof TabFolder) {
... // same code

} else if (widget instanceof CTabFolder) {
... // same code
... // 5 more items

(a) (b)

Fig. 2. Code excerpts from Azureus, illustrating an awkward coding style and duplication.

generic fashion. Azureus is localized for a number of languages, which can be changed
at runtime. Accordingly, there are several instances of code similar to that of Fig. 2.

Note that some of this code duplication might be avoided if the class hierarchy were
refactored. Obviously, this is not always possible—e.g., Azureus cannot modify SWT.

In summary, common methods can lead to undesirable code duplication. Structural
subtyping can help eliminate this problem, without refactoring the class hierarchy.

6 Cascading “instanceof” Tests

We considered the question of whether structural subtyping could provide benefits if
used in conjunction with other language features—external methods in particular. Ex-
ternal methods (also known as open classes) are similar to ordinary methods and pro-
vide the the usual dispatch semantics, but can be implemented outside of a class’s def-
inition, providing more flexibility. Multimethods are a generalized form of external
method, defined outside all classes and allowing dispatch on any subset of a method’s
arguments [9, 4, 10, 17].

Since Java does not support any form of external dispatch, programmers often com-
pensate by using cascading instanceof tests. This programming pattern is problem-
atic because it is tedious, error-prone, and lacks extensibility [10]. Many instances of
this pattern could be re-written to use external methods, but a problem arises if an
instanceof test is performed on an expression of type Object.

To illustrate this, let us consider how instanceof tests would be translated to ex-
ternal methods. Suppose we have a cascaded instanceof, with each case of the form
“[else] if expr instanceof Ci { blocki }.” This would be translated to an ex-
ternal method f defined on expr’s class, and overridden for each Ci by defining Ci. f
{ blocki }. The top part of Fig. 3b shows the external methods translated from the
instanceof tests in Fig. 3a (but without an external method defined on Object, the
type of query, which we will come to in a moment).

A problem arises when the target expression in the instanceof test is of type
Object, as an external method must be defined on Object, then overridden for each
type tested via an instanceof. The problem with this solution is that it pollutes the
interface of Object. In many cases, the implementation of this method performs a
generic fallback operation that does not make sense for an object of arbitrary type—but

12



List qlist = ...

Object query = qlist.get(i);

Query q = null;
if (query instanceof String)
q = parser.parse((String) query);

else if (query instanceof Query)
q = (Query) query;

else
System.err.println(

"Unsupported query type");

// external methods
Query String.toQuery(QueryParser parser) {
return parser.parse(this);

}
Query Query.toQuery(QueryParser parser) {
return this;

}
...

// structural type
struct QueryConvert { Query toQuery(QueryParser) };
List<QueryConvert> qlist = ...

Query q = qlist.get(i).toQuery(parser);

(a) (b)

Fig. 3. Rewriting instanceof using structural subtyping and external dispatch. Listing (a) is the
original code; listing (b) is the translated code, which defines the structural type QueryConvert
and external methods on Query and String. Note that the translated code eliminates the need
for the error condition.

Table 5. Total instanceof tests, the number present in cascading if statements that perform the
test on an expression of type Object, and that number expressed as a percentage. Code written
using this pattern can be translated to a language with structural subtyping and external dispatch.

instanceof Expression of type Object Percentage

Apache collections 225 75 33%
Areca 77 10 13%
JHotDraw 229 50 22%
log4j 54 8 15%
Lucene 56 10 18%
PLT collections 119 64 54%
Smack 56 20 36%
Tomcat 959 158 16%

Average 26%

this method becomes part of every class’s interface and implementation. (While it is
also possible to pollute the interface of an arbitrary class C, this is generally less severe,
and detecting such a situation requires application-specific knowledge.)

To determine the prevalence of this pattern, we manually searched for instanceof
tests in 8 applications, and found that 13% to 54% (with an average of 26%) were per-
forming a cascading instanceof test on an expression of type Object (see Table 5).

Structural subtyping provides one solution to this problem. We have previously de-
fined a language with both structural subtyping and external dispatch [17]. The type of
the expression on which the instanceof is performed would be changed from Object
to the structural type consisting of the newly defined external method f . That is, instead
of making the target operation applicable to an arbitrary object, it would be applica-
ble to only those objects that contain method f . Figure 3b defines an external method
toQuery on String and Query, then uses the structural type { toQuery(...) } as
the type for the List elements. The advantage of using structural subtyping is that the
main code can call this method uniformly. 2

2 Note that it would not be possible to make use of a nominal interface containing the method f

13



Thus, for many applications, there is a potential benefit to using structural subtyping
in a language that supports external dispatch; an average of 26% of instanceof tests
could be eliminated.

Note that since we refined the element type of the List object, this obviates the need
for the error condition—an additional advantage. However, it is not always possible to
refine types to a structural type; an expression may simply have type Object, due to the
loss of type information. In such a case, it would be possible to re-write the code using
a structural downcast. Though the use of casts would not be eliminated, there are still
several advantages to this implementation style. First, the external methods could be
changed without having to also modify the method that uses them. Also, if subclasses
are added, a new internal or external method could be defined for them. Finally, since
the proposed cast would use a structural type, it would be more general, applying to any
type for which the method were defined.

7 Java Reflection Analysis

We aimed to answer the following question: do Java programs use reflection where
structural types would be more appropriate? We hypothesized that uses of reflection fall
into two categories: cases where dynamic class instantiation and classloading are used,
and cases where the type system is not sufficiently powerful to express the programming
pattern used. It is difficult to eliminate reflection in the first category, as these uses
represent an inherently dynamic operation. However, some of the uses in the second
category could potentially be rewritten using structural downcasts. Reducing the uses
of reflection is beneficial as it decreases the number of runtime errors and can improve
performance.

We examined 28 applications, and found that an average of 32% of uses of the
reflection method Class.getMethod could be re-written using a structural downcast
(see Table 6). A structural downcast is preferable to reflection because type information
is retained when later calling methods, as opposed to Method.invoke, which is passed
an Object array and must typecheck the arguments at runtime. Additionally, it is easier
to combine sets of methods in a downcast; when using reflection, each method must be
selected individually. There is also the potential to make method calls more efficient,
which is difficult with reflection, due to the low-level nature of the available operations.
(For example, the language Whiteoak [14] supports efficient structural downcasts.)

In summary, the high percentage of reflection uses that can be translated to structural
downcasts suggests that programmers may sometimes use reflection as a workaround
for lack of structural types.

8 Related Work

A number of research languages support structural subtyping, such as O’Caml [15],
PolyToil [6], Moby [11], and Strongtalk [5]. We have also previously defined a language

to call the method in a generic manner. For external methods to be modular, once a method is
defined as an internal method, it cannot be implemented with an external method; see [20, 10].

14



Table 6. Uses of the reflection method Class.getMethod, and the number and percentage that
could be re-written using a structural downcast. Programs that did not call this method are omit-
ted. The percentage entry in the last row is calculated by dividing the total “could be rewritten”
by the total “uses of getMethod.”

Uses of getMethod Could be rewritten Percentage

Ant 36 9 25%
Apache Collections 4 3 75%
Areca 1 0 0%
Azureus 27 6 22%
Cayenne 28 4 14%
Columba 10 8 80%
hsqldb 2 0 0%
jEdit 10 7 70%
JFreeChart 1 1 100%
JHotDraw 26 1 4%
JRuby 17 6 35%
log4j 4 1 25%
OpenFire 2 0 0%
Tomcat 37 10 27%
Xalan 28 11 39%

Totals 233 67 29%

supporting both external dispatch and structural subtyping [17]. An evaluation of the
benefits of each of nominal and structural subtyping is available in [23, 17].

As mentioned in Sect. 3, researchers have studied the problem of refactoring pro-
grams to use most general nominal types where possible [12, 24]. Structural subtyping
would make such refactorings more feasible (since new types would not have to be de-
fined) and applicable to more type references in the program (since structural supertypes
for library types could be created, while new interfaces cannot).

Muschevici et al. measured the number of cascading instanceof tests in a number
of Java programs, to determine how often multiple dispatch might be applicable [21].
They found that cascading instanceof tests were quite common, and that many cases
could be rewritten to use multimethods; this is consistent with our results.

Corpus analysis is commonly used in empirical software engineering research. For
example, it has been used to examine non-nullness [8], aspects [2], micro patterns [13],
and inheritance [25].

9 Summary and Conclusions

In summary, we found that a number of different aspects of Java programs suggest the
potential utility of structural subtyping. While some of the results are not as strong as
others, taken together the data suggests that programs could benefit from the addition
of structural subtyping, even if they were written in a nominally-typed language.

We hope that the results of this study will be used to inform designers of future
programming languages, as well as serve as a starting point for further empirical studies
in this area. Ultimately, one must study the way structural subtyping is eventually used
by mainstream programmers; this work serves as a step in that direction.

15



Acknowledgements We would like to thank Ewan Tempero for helpful discussions
and feedback, and Nels Beckman and the reviewers for comments on an earlier version
of this paper. This research was supported in part by the U.S. Department of Defense,
Army Research Office grant number DAAD19-02-1-0389 entitled “Perpetually Avail-
able and Secure Information Systems,” and NSF CAREER award CCF-0546550.

References
[1] R. Amadio and L. Cardelli. Subtyping recursive types. ACM TOPLAS, 15(4), 1993.
[2] P. Baldi, C. Lopes, E. Linstead, and S. Bajracharya. A theory of aspects as latent topics. In

OOPSLA, 2008.
[3] J. Bloch. Effective Java, Second Edition. Addison-Wesley, 2008.
[4] J. Boyland and G. Castagna. Parasitic methods: an implementation of multi-methods for

Java. In OOPSLA ’97, pages 66–76, 1997.
[5] G. Bracha and D. Griswold. Strongtalk: typechecking Smalltalk in a production environ-

ment. In OOPSLA ’93, pages 215–230, 1993.
[6] K. Bruce, A. Schuett, R. van Gent, and A. Fiech. PolyTOIL: A type-safe polymorphic

object-oriented language. ACM Trans. Program. Lang. Syst., 25(2):225–290, 2003.
[7] L. Cardelli. Structural subtyping and the notion of power type. In POPL ’88, 1988.
[8] P. Chalin and P. James. Non-null references by default in Java: Alleviating the nullity

annotation burden. In ECOOP, 2007.
[9] C. Chambers. Object-oriented multi-methods in Cecil. In ECOOP ’92, 1992.

[10] C. Clifton, T. Millstein, G. Leavens, and C. Chambers. MultiJava: Design rationale, com-
piler implementation, and applications. ACM TOPLAS., 28(3):517–575, 2006.

[11] K. Fisher and J. Reppy. The design of a class mechanism for Moby. In PLDI, 1999.
[12] Florian Forster. Cost and benefit of rigorous decoupling with context-specific interfaces.

In PPPJ ’06, pages 23–30, 2006.
[13] J. Gil and I. Maman. Micro patterns in Java code. In OOPSLA ’05, pages 97–116, 2005.
[14] J. Gil and I. Maman. Whiteoak: Introducing structural typing into Java. In OOPSLA, 2008.
[15] X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system,

release 3.10. Available at http://caml.inria.fr/pub/docs/manual-ocaml, 2007.
[16] B. Magnusson. Code reuse considered harmful. Journal of Object-Oriented Programming,

4(3), November 1991.
[17] D. Malayeri and J. Aldrich. Integrating nominal and structural subtyping. In ECOOP ’08,

July 2008.
[18] Donna Malayeri and Jonathan Aldrich. Is structural subtyping useful? An empirical study.

Technical Report CMU-CS-09-100, School of Computer Science, Carnegie Mellon Uni-
versity, January 2009.

[19] Sun Microsystems. Java collections API design FAQ. Available at http://java.sun.
com/j2se/1.4.2/docs/guide/collections/designfaq.html, 2003.

[20] T. Millstein and C. Chambers. Modular statically typed multimethods. Inf. Comput.,
175(1):76–118, 2002.

[21] R. Muschevici, A. Potanin, E. Tempero, and J. Noble. Multiple dispatch in practice. In
OOPSLA 08, October 2008.

[22] D. Musser and A. Stepanov. Generic programming. In P. Gianni, editor, ISAAC ’88, vol-
ume 38 of Lecture Notes in Computer Science, pages 13–25. Springer, 1989.

[23] B. Pierce. Types and Programming Languages. MIT Press, 2002.
[24] F. Steimann. The infer type refactoring and its use for interface-based programming. Jour-

nal of Object Technology, 6(2), 2007.
[25] E. D. Tempero, J. Noble, and H. Melton. How do Java programs use inheritance? An

empirical study of inheritance in Java software. In ECOOP ’08, pages 667–691, 2008.

16


